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Abstract Grouped data have been widely used to analyze the global income distri-
bution because individual records from nationally representative household surveys
are often unavailable. In this paper we evaluate the performance of nonparametric
density smoothing techniques, in particular kernel density estimation, in estimating
poverty from grouped data. Using Monte Carlo simulations, we show that kernel
density estimation gives rise to nontrivial biases in estimated poverty levels that
depend on the bandwidth, kernel, poverty indicator, size of the dataset, and data
generating process. Furthermore, the empirical bias in the poverty headcount ratio
critically depends on the poverty line. We also undertake a sensitivity analysis of
global poverty estimates to changes in the bandwidth and show that they vary widely
with it. A comparison of kernel density estimation with parametric estimation of the
Lorenz curve, also applied to grouped data, suggests that the latter fares better and
should be the preferred approach.
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1 Introduction

Recent studies have used nonparametric smoothing techniques, and in particular
kernel density estimation (KDE) on grouped data to obtain poverty estimates and
to describe the global income distribution.1 Grouped data—also referred to as
tabulated data—typically take the form of income averages for a small number of
population quantiles (quantile means). Grouped data have been popular because
individual records from household surveys are often unavailable or are difficult to
obtain or analyze, especially for multiple country-years.2 Furthermore, large cross-
country datasets such as the UNU-WIDER World Income Inequality Database and
the World Bank’s Povcalnet now offer a large amount of distributional information
in grouped form. Despite recent efforts to estimate features of the global income
distribution from grouped data alone, the relative performance of various methods
in this setting remains unstudied.

Kernel density estimation is one of several alternatives for estimating income
distributions from grouped data. Also popular are parametric approaches such as the
estimation of a functional form for the Lorenz curve or income distribution density
function.3 In a study of these methods, Minoiu and Reddy [30] show that commonly-
used parameterizations of the Lorenz curve such as the General Quadratic (GQ) and
Beta models, respectively developed by Villasenor and Arnold [39] and Kakwani
[18], perform well in estimating poverty and inequality from grouped data. We
use these two parameterizations of the Lorenz curve in the analysis to provide a
benchmark for our nonparametric results. This allows us to examine the performance
of nonparametric kernel density estimation compared to parametric approaches.

We begin by examining the performance of the nonparametric approach in
estimating the income distribution and poverty from grouped data. We report biases
in poverty estimates for several plausible income distributions and a wide range of
poverty indicators, poverty lines, bandwidths, and kernels. Our method is a Monte
Carlo simulation study which allows us to compare the poverty estimates obtained
from grouped data with their population counterparts. We find that KDE gives rise
to nontrivial biases in estimated poverty levels that depend on the bandwidth, kernel,
poverty indicator, poverty line, size of the dataset, and data generating process. For
all income distributions considered, the average income of the poorest quantiles
is generally underestimated, while that of the richest is overestimated. In turn,
this leads to a systematic overestimation of the poverty headcount ratio for lower
poverty lines, and opposite biases for higher ones. The poverty headcount ratio is
statistically close to its theoretical counterpart only when the poverty line is close to

1See [2, 14, 35, 44] for analyses of global or national income distributions and poverty.
2See, e.g., [5] for an analysis of the long-run global income distribution, and [26–28] for estimates of
global inequality based on grouped data.
3See, for instance, [6, 33]. Flexible functional forms for the income density from the exponential
family and the Generalized Beta distribution also provide accurate estimates, as shown in [8, 42].
Lorenz curve estimation through the World Bank’s POVCAL and SimSIP computational tools is
widespread.
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the population median (so that the true headcount ratio is around 50%). In contrast
to these results, the parametric approach of estimating the Lorenz curve from
grouped data appears consistently to fare better. Across all distributions, poverty
lines, and poverty indicators considered, the empirical biases tend to be of smaller,
often negligible magnitude.

We also assess the sensitivity of global poverty estimates obtained with the kernel
density estimator to the choice of bandwidth. The bandwidth is a key parameter
in nonparametric methods which controls the smoothness of the estimated density.
Larger bandwidths are associated with smoother densities. Using grouped data from
the World Bank’s Povcalnet database for a large number of countries, we find that
the estimated level of global poverty in 1995 and 2005 varies markedly with the choice
of bandwidth. In contrast, the estimated trend of poverty reduction over the period is
robust across bandwidths. Taken together, our findings suggest that researchers who
employ nonparametric methods to analyze poverty should assess the robustness of
their results to alternative parameter choices as a matter of routine, especially when
using grouped data rather than individual records. Furthermore, preference for the
parametric approach may be warranted due to its superior performance for a wide
range of income distributions.

It will perhaps be unsurprising that applying nonparametric methods on sparse
data gives rise to biases in the estimated income distribution and poverty measures.
The purpose of nonparametric estimators is to provide means of uncovering patterns
using information from a wealth of observations and they therefore work best
on large samples. The statistical literature advises that they should be used in
“exploratory data analysis, as a confirmatory tool, or as a supplement to the standard
parametric fare” [43, p. 672].4 Although their application to grouped data is almost
sure to generate biases, the sign and magnitudes of these biases—for distinct poverty
indicators and poverty lines, and for various income distributions—are unknown ex
ante. Our goal is to document these biases for a range of plausible income distrib-
utions and to inform readers of possible caveats when applying these techniques to
grouped data. Current debates on the extent and trend of world poverty underscore
the importance of assessing the performance of alternative statistical methods.

The remainder of the paper is organized as follows. We discuss the problem
of estimating poverty from grouped data using the kernel density estimator in
Section 2. Section 3 describes the Monte Carlo design and the bandwidths and
kernels considered. Section 4 presents the results of our Monte Carlo simulations
for both the parametric and KDE approach. In Section 5 we discuss the sensitivity
of global poverty estimates to changes in the bandwidth. Conclusions are deferred
to Section 6. The results presented in the paper are accompanied by a series of
robustness checks available in a Supplementary Online Appendix.5

4Yatchew [43, p. 715] further argues that “interpolation is only deemed reliable among close
neighbour[ing] observations, and extrapolation outside the observed domain is considered entirely
speculative.”
5The Supplementary Online Appendix may be downloaded from www.camelia-minoiu.com/kde-
online.pdf
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2 The problem

We begin by defining the poverty indicators on which we focus in the analysis, as well
as the data and the kernel density estimator.

2.1 Obtaining an estimate of poverty

Poverty is usually estimated using individual records from a household survey
that collects information on a variable of interest such as income or consumption.
Denoting the individual incomes in a survey of N individuals as {X1, X2, ..., XN}
and z as the poverty line, the most popular poverty measures come from the FGT

family generally written as Pα = 1
N

N∑
Xi≤Z

( z−Xi
z

)α
, where α captures the degree of

distributional sensitivity. The higher is the α, the more weight is placed on the income
shortfalls from the poverty line experienced by the poorest individuals. For α = 0 we
obtain the poverty headcount ratio (the proportion of the population that is poor).
Values α = 1 and α = 2 yield the poverty gap and the squared poverty gap. Here we
consider values for α ranging between 0 and 4.

2.2 Grouped data vs. individual records

Suppose that individual records from the survey itself are unavailable but the re-
searcher has access to grouped data. Grouped data are income averages for a number
of population groups (for instance, quintiles, deciles and ventiles, corresponding
respectively to five, ten, and twenty population groups). In what follows, we focus
on deciles (rather than quintiles) because they have become increasingly available in
recent years. We also briefly discuss the properties of quantile means as linear func-
tions of order statistics and robust estimators of location to provide a rationale for our
empirical findings. Decile means are obtained by first ordering the original income
observations in ascending order to obtain order statistics {X1 ≤ X2 ≤ ... ≤ XN}, then
dividing the sample into J = 10 groups of equal size M, and finally calculating income

averages for each group j as
(

u j = 1
M

M∑
i=1

Xi
( j)

)
.

It should be noted that a dataset of decile means {u1, u2, ..., u10}contains more
information about the underlying distribution than does a dataset of ten random
observations from that distribution. This is because grouping the data means trans-
forming the individual records into summary information about the underlying
distribution. Thus, quantile means in general, and decile means in particular, retain
important information about the underlying distribution due to the ordering of the
original observations. One way to see this is to think of them as trimmed means—that
is, averages obtained over observations remaining after certain percentages of the
lowest and the highest scores have been discarded. Trimmed means can further be
symmetric or asymmetric. For example, the lowest decile mean, which is the average
of incomes left after discarding the top 90% of observations, is an asymmetrically
trimmed mean. In contrast, the middle quintile mean, obtained by averaging over
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the incomes remaining after discarding the bottom and the top 40% of observations,
is a symmetrically trimmed mean.

Following Mosteller’s [31] seminal work on order statistics, it has been shown
that symmetrically trimmed means are robust estimators of location. Furthermore,
they are unbiased estimators for the population mean when the data are drawn from
a symmetric distribution. This may be relevant to the case of income distributions
because if the income distribution is log-normal, then log-incomes are distributed
symmetrically. Since the log-normal distribution is traditionally considered as a good
model for real-world income distributions, we might expect that the middle quantile
means will yield relatively accurate estimates of the location of the underlying
distribution. Indeed, we find below that the population median tends to be well
estimated for a range of plausible log-income distributions and especially for the
(symmetrical) normal distribution. This is the case irrespective of the bandwidth and
kernel used in the estimation.

2.3 The kernel density estimator on grouped data

Assuming that the individual records in the household survey are i.i.d. draws from
an unknown density f (x) with positive support [ 0,∞) , the kernel density estimator

of f (x) computed on the grouped data is given by: f̂ (x)grouped_data = 1
Jh

J∑
j=1

k
(

x−u j

h

)
,

where h is the bandwidth and k(·) is the weighting function or kernel. Following the
derivation of bias employed by Silverman [37], the bias of the grouped-data estimator
atx can be shown to be:

Bias f̂ (x)grouped_data
∼= 1

J

J∑

j=1

g j (x) + h2

2J

(∫
t2k (t) dt

) J∑

j=1

g j
′′(x) − f (x)

where g j (·) is the unknown probability density function of the jth quantile mean,∫
t2k (t) dt is a constant depending on the kernel, and (small) higher-order terms in

h arising from a Taylor approximation have been omitted for simplicity. Notably,
the bias of the kernel density estimator is a function of the unknown data generating
process f (x)—a key feature of nonparametric estimators. Evaluating the bias exactly
requires analytical expressions for the density of random variables underpinned by
trimmed means, which are intractable to arrive at, inter alia because the ordering of
the original observations induces a complex correlation structure among the quantile
means. We therefore resort to Monte Carlo simulations to quantify the bias of the
estimator.

A second issue arising in the estimation is that the support of an income distri-
bution generally has a left hand-side bound of zero. Whether KDE is applied to
individual records or grouped data, the density close to the boundary will have a
substantial downward boundary bias (as documented by Marron and Ruppert [24]),
which will affect poverty estimates and distort visual illustrations of the income
distribution. To mitigate the boundary bias, we follow the standard practice of log-
transforming the income averages before estimating the density.
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3 Set-up of Monte Carlo simulations

3.1 Monte Carlo design

In the Monte Carlo analysis, we undertake kernel density analysis on grouped data
in three steps, as follows:6

First, we generate independent random samples of 10,000 observations from
three theoretical distributions: the two-parameter log-normal, the three-parameter
Dagum, and the four-parameter Generalized Beta 2 distribution (GB2). (We refer
below to the number of such samples generated as the number of replications.)
The distributions are parameterized with values reported in [4] from the fitting of
these distributions to survey data from Russia (1995), Poland (1992), and Mexico
(1996). Inspecting which distribution fits best a wide range of household surveys, the
authors conclude that the Dagum distribution provides the best fit to survey data
in the class of three-parameter distributions, while the GB2 distribution is the best
performing four-parameter distribution. We add to the analysis the two-parameter
log-normal distribution because it is widely used in the income distribution literature
and has been often argued to provide a good fit to real-world income data [22]. The
population distributions we use for incomes and log-incomes (shown in Fig. 1) have
diverse distributional shapes, with the Gini coefficient of inequality ranging from 0.36
for the Dagum to 0.6 for the log-normal.

In the second step, we calculate quantile means from each sample and perform
KDE upon these means to estimate the income distribution. For the majority of the
results presented here we work with decile means, but also consider quintile and
ventile means to investigate the link between the number of data points and the
accuracy of the estimator. For the parametric analysis, in this step we estimate the
Lorenz curve from the grouped data respectively using the GQ and Beta functional
forms, the parameters of which are estimated by means of regression.7

In the third step, we compare summary statistics and poverty estimates from the
fitted densities, either through the nonparametric or parametric approach, with the
population values from the underlying (theoretical) distributions. Population values
were obtained analytically. For the Dagum distribution, formulas for the density
and quantile functions were obtained from [13, 20], while formulas for the GB2
distribution were taken from [25].

To ensure that our Monte Carlo estimates are accurate in the sense that the sample
quantile means are statistically ‘close’ to the corresponding population values, we
calculate the minimum number of replications (for each theoretical distribution and
quantile mean) that ensure a small percentage error in each sample estimate vis-
à-vis the population value (see [11, 12, 32]). The minimum number of replications

6For the Monte Carlo simulations, we use specially-designed software KDETool (available from the
authors upon request) and the DASP STATA package [1].
7See [7, 9] for a detailed discussion of parametric models for the Lorenz curve.
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Fig. 1 Population densities
for Monte Carlo simulations
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Notes: The population densities have been parameterized according to income distributions 
that perform well in fitting survey data (see Section 3.1 for details). In the first panel the 
curves have been clipped at the 90th percentile for better visibility. 

needed to assert with 95% confidence that our sample quantile means are off by at
most 1 percent from the population means is 1,842. Therefore, we fix the number of
replications at 2,000.8

8The minimum number of replications that ensures a given percentage error (equal to 100 x RE) is

given by R =
(

(Zα/2)/s(
RE

1+RE

)
x̄

)2

, where RE is the relative error, s is the sample standard deviation which

approximates the population standard deviation, x̄ is the sample estimate of the theoretical x (i.e.,
a quantile mean), and Zα/2 is the standard normal distribution evaluated at (α/2), with α being the
level of confidence with which we can assert that the difference between x̄ and x exceeds the specified
relative error amount RE: P (|x̄ − x|) > RE|x|) = α.
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3.2 Bandwidths and kernels

For the nonparametric estimator we consider eight data-driven bandwidths. First, we
use the first generation, rule-of-thumb optimal bandwidths proposed by Deheuvels
[10] and described in [37]. These bandwidths—labeled S1 to S4—are optimal in the
sense that they seek to minimize the approximate mean integrated squared error. In
doing so, they also make the assumption that the underlying distribution is normal,
which means that they work best when estimating Gaussian-like distributions. The
S1 bandwidth, which is given by

(
1.06 × σ × J−1/5

)
where σ is the standard deviation

of the data and J is number of quantiles, tends to over-smooth the density and
performs poorly on heavily skewed distributions. The S2 bandwidth is calculated by
replacing the standard deviation with the interquartile range (IQR) as a measure of
dispersion and is given by

(
0.79 × IQR × J−1/5

)
. The S2 bandwidth performs better

than S1 on long-tailed and heavily-skewed distributions, but does not do well on
multimodal distributions. Two other variants proposed by Silverman [37] are the
S3 bandwidth given by

(
0.9 × A × J−1/5

)
where A = min (IQR/1.34, σ ) and the S4

bandwidth which is calculated by replacing A with σ in the above formula. The S3
and S4 bandwidths achieve a more balanced degree of smoothing than S1 and S2 and
have been deemed to work well on skewed and multimodal distributions. In addition
to S1–S4, we also include some results based on the ‘over-smoothed’ bandwidth,
which is the largest bandwidth associated with a “reasonable” degree of smoothing
[16]. The over-smoothed bandwidth is given by

(
1.14 × σ × J−1/5

)
.

Second, we consider second-generation bandwidths such as the Sheather-Jones
[36] and the direct plug-in (DPI) bandwidths [40]. Second-generation bandwidths
tend to outperform Silverman’s rule-of-thumb bandwidths theoretically and in sim-
ulations. The Sheather-Jones bandwidth has been recommended as a benchmark
of good performance in simulation-based studies [17]. The DPI bandwidths have
also been shown to perform very well in simulations, but are less appropriate for
multimodal densities. The key difference between them is that the DPI bandwidth
requires choosing a starting bandwidth (typically, a rule-of-thumb one), estimating
the density, and obtaining an estimate of data dispersion. Then the density is re-
estimated. The process can be repeated several times. We only consider the DPI-1
and DPI-2 bandwidths which involve respectively one and two re-estimations of the
density.

The constants shown in the bandwidth formulas above correspond to the Gaussian
kernel. For all other kernels we employ canonical bandwidths, which means that
the constants are kernel-specific. Canonical bandwidths ensure that each bandwidth-
kernel combination achieves the same approximate value of the integrated mean
square error, so they lead to the same amount of smoothing [23]. This renders the
results comparable across different kernels for a given bandwidth.

In regards to kernel functions, we consider the Gaussian, Epanechnikov, Quartic,
Triweight and Triangle kernels. (For a comprehensive treatment of kernels, see [21]).
Although the mean integrated squared error is minimized for the Epanechnikov ker-
nel, all kernels have similar asymptotic performance [37]. Since our analysis is based
on a small number of data points, we have no reason ex ante to discard any particular
kernel. While most of the results shown in the paper refer to the commonly-used
Gaussian and Epanechnikov kernels, they are robust to using alternate kernels and
are included in the Supplementary Appendix.
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4 Results of Monte Carlo simulations

Here we present the results of the Monte Carlo study, comparing estimated quanti-
ties such as summary statistics and poverty indicators based on the parametric and
nonparametric approaches with their population values. Unless otherwise noted, the
results are based on deciles and are expressed as a ratio of the estimate of interest,
averaged over the 2,000 replications, and the corresponding population value. Values
greater than one indicate that the technique leads to an overestimation of the
true value, and values less than one indicate the opposite. To gauge the statistical
significance of our results, we use boldface in the tables to highlight cases in which the
population value lies inside the 95% confidence interval around the average estimate.
All figures not in boldface therefore indicate that the estimator does not produce
estimates within a 95% confidence interval of the population value.

4.1 Basic features of KDE-based densities

We first compare summary statistics (means, medians, standard deviation, and decile
means) from the simulated samples with their population values. The results are
shown in Table 1 (Panel A) for the Epanechnikov and the Gaussian kernels and
four bandwidths (S4, S2, Sheather-Jones, and DPI-1).9 The two kernels were chosen
illustratively due to their widespread use in empirical studies. Panel A depicts some
striking results, as we see that almost all estimated quantities are biased. Focusing
on the first three columns, we find that the mean is systematically overestimated,
especially for the Epanechnikov kernel. However, the size of the bias varies with
both the underlying distribution and the bandwidth. The standard deviation is also
consistently overestimated, which suggests that the KDE-fitted density is too smooth
compared to the true one. In contrast, the median is well estimated through KDE,
and so are the middle decile means (Q4 to Q6, but especially Q5). This is consistent
with the statistical literature which has shown that symmetrically trimmed means—
in our case, the middle decile means—are good indicators of the location of the
true distribution [3, 38]. However, comparing the results solely across the last ten
columns (Q1 to Q10) in Panel A, we find that the average income of the poorest
population deciles tends to be underestimated whereas the average income of the
richest deciles tends to be overestimated. In other words, the poor appear poorer
and the rich appear richer. (This is especially the case for the log-normal and
Dagum distributions, for reasons explained below.) The estimator systematically
generates distortions in the tails of the distributions, which are crucial to estimating
poverty.

Panel B presents the same results based on parametric estimation of the Lorenz
curve. While the mean and median of the underlying distributions are well es-
timated, the parametric approach also tends to overestimate the standard de-
viation. Nevertheless, the decile means are generally more accurately estimated
with this approach; the GQ functional form fares particularly well in estimating
features of the log-normal distribution, whereas the Beta model works best for

9Results based on the remaining bandwidths are shown in Table A1 in the Supplementary Appendix.
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C. Minoiu, S.G. Reddy

the Dagum and GB2 distributions. It is noteworthy to find evidence that specific
functional forms may work better for parametric estimation of different income
distributions.

Average KDE-based densities are compared to their population counterparts in
Fig. 2 for each distribution. In Panels A-C we assess the impact of different kernels on
the fitted density holding the bandwidth fixed. The choice of kernel does not appear
visually consequential. In Panels D-F we assess the impact of different bandwidths
on the fitted density holding the kernel fixed. The choice of bandwidth appears more
important than that of kernel. Figure 2 also depicts a series of consistent patterns

Impact of kernel Impact of bandwidth
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Note: Estimates are based on decile means. Panels A-C show the impact of changing the kernel on the density estimates and correspond to the  
S3 bandwidth. Panels D-F show the impact of changing the bandwidth on the density estimate and correspond to the Epanechnikov kernel.  

Fig. 2 Visual illustrations
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Kernel density estimation on grouped data: the case of poverty assessment

across distributions.10 First, the fitted densities are centered correctly vis-à-vis the
population densities. Second, the bias in the fitted densities varies with the income
level. The estimated densities are biased upwards in the left tail (e.g., for the log-
normal and Dagum distribution), which is consistent with the mean income of the
poorest deciles being underestimated.11 The density estimates are biased downwards
in the middle of the distribution, and the bias turns positive again in the right tail of
the distribution, hence the overestimated average income of the richest.

These patterns give us a preview of the performance of the estimator in poverty
analysis. With the mean income of the poorest being systematically underestimated,
we expect the poverty headcount ratio to be overestimated for relatively low poverty
lines. As the bias of the density turns from positive to negative on the log-income
axis, there comes an income level (or poverty line) for which the biases will cancel
out. We expect the poverty headcount ratio to be relatively well estimated when
the poverty lines are close to the center of the distribution. Beyond that, toward the
right, the KDE-based density continues to be underestimated, which suggests that
for higher poverty lines the headcount ratio may be biased downwards.

4.2 Visualizing the empirical biases across poverty lines

To describe how biases in the fitted densities relate to the accuracy of estimating
poverty, we focus on the widely-used poverty headcount ratio (HCR). We use
poverty lines ranging from a low poverty line which represents only a fraction of
the population median (0.25 × median) to a high poverty line which is twice as
large as the population median (2 × median). Figure 3 depicts the empirical bias
of the estimated HCR as a function of the poverty line, along with a 95% confidence
interval. The bias is calculated as the difference between the average estimated
HCR and the population HCR, and is expressed in percentage points. Panels
A–C in Fig. 3, each corresponding to a different distribution, show that KDE on
grouped data leads the HCR to be overestimated for lower poverty lines, relatively
well estimated for poverty lines close to median income, and underestimated for
higher poverty lines. The HCR bias is positive and high for low poverty lines (at
about 5 percentage points), diminishes as the poverty line approaches the population
median, and becomes negative for higher-than-median poverty lines (up to about −5
percentage points). Although Fig. 3 plots the empirical bias for a particular kernel-
bandwidth combination (the Gaussian kernel and DPI-2 bandwidth), the patterns
are illustrative for other kernel-bandwidth pairs.12

Overall, it appears that as long as the underlying income distribution is unimodal
and resembles one of the theoretical distributions considered here, kernel smoothing
methods are likely to lead poverty to be overestimated in richer countries, which have

10These are robust to considering alternate bandwidths and kernels (see Figs. A1–A2 in the
Supplementary Appendix).
11An exception here is the GB2 distribution, for which the fitted density is first biased downwards
and then biased upwards in the left tail. The crossing of the estimated and true log-income densities
explains why the degree of misestimation of the decile means does not vary monotonically with the
decile rank.
12See Fig. A3 and Table A2 in the Supplementary Appendix.
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Kernel density estimation Lorenz Curve parametric estimation
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Fig. 3 How does the bias vary across poverty lines?

national poverty lines that are low relative to median income, and underestimated
in many poorer countries, where national poverty lines may be higher than median
income. It is difficult to say what would happen in a regional or global poverty
analysis when the sample contains both poor and rich countries, as some of the biases
may cancel out. The dominating effect will likely depend both on the share of poor
countries and their relative sizes.
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Kernel density estimation on grouped data: the case of poverty assessment

These findings stand in contrast with the results from the parametric approach
(Fig. 3, Panels D–F). For instance, when the Beta functional form is used, the
empirical bias is smaller than for the nonparametric estimates discussed above,
for all distributions. Consistent with the relatively good fit for the decile means
afforded by the Beta model for the Lorenz curve, the bias is zero or negligible
across all poverty lines in the case of the Dagum and GB2 distributions (Panels
E–F).13 Conditional on income data being generated by the distributions chosen
here, the parametric approach appears to consistently outperform the nonparametric
approach for estimating poverty from grouped data.

4.3 Empirical biases across bandwidths and poverty lines

In Table 2 we show how the empirical bias in the HCR varies across bandwidths
(keeping the kernel constant) and poverty lines. The results are based on the
Epanechnikov kernel and are representative for other kernels such as the Gaussian
and Triweight.14 From the first column to the last, the bandwidths are arranged
roughly in ascending order of size, with larger bandwidths bringing about a higher
degree of smoothing. Comparing across rows allows us to gauge the impact of the
poverty line. For the lower-than-median poverty lines, the biases are positive and
statistically significant, and become larger as the amount of smoothing increases. For
the higher-than-median poverty lines, the biases are negative, statistically significant,
and also increase with the bandwidth. It is only when the poverty line is equal
to the population median that the nonparametric estimator accurately measures
the HCR.

While the sign of the bias appears robust across income distributions, its size varies
for any given bandwidth. For instance, for the lowest poverty lines (0.25 × median),
the Sheather-Jones bandwidth leads the HCR to be overestimated by 38% for the
log-normal distribution, 41% for the Dagum distribution, and 26% for the GB2
distribution. Similarly, for the highest poverty line (2 × median), the same bandwidth
leads the HCR to be underestimated by 6% for the log-normal, 8% for the Dagum,
and 9% for the GB2 distribution. This suggests that that KDE will lead to biases
of different magnitude depending on the data generating process, so our results
cannot be generalized. Nevertheless, they provide robust information about the sign
of the bias as a function of the location of the poverty line relative to the population
median. The researcher using this technique may expect a positive, negative, or zero
bias depending on her prior belief about how the poverty line in a specific country
compares with the true median.

4.4 Empirical biases across kernels and poverty lines

To examine the biases in the KDE-based HCR across selected kernels, we fix the
degree of smoothing (by fixing the bandwidth to be S4). The results are reported in

13The results for the GQ model are similar (see Figure A4 in the Supplementary Appendix).
14See Table A3 in the Supplementary Appendix.
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Table 2 How does the bias vary across bandwidths?

Underlying Poverty line Bandwidth

distribution (as multiple S4 S3 S2 Sheather- DPI-1 DPI-2 S1 Oversmoothed
of population Jones
median)

Log-normal 0.25 1.27 1.27 1.36 1.38 1.44 1.44 1.48 1.54
0.50 1.10 1.27 1.36 1.38 1.44 1.44 1.48 1.54
0.75 1.03 1.03 1.04 1.04 1.05 1.05 1.05 1.06
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.25 0.98 0.98 0.97 0.97 0.97 0.97 0.96 0.96
1.50 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.94
1.75 0.96 0.96 0.95 0.95 0.94 0.94 0.93 0.93
2.00 0.96 0.96 0.94 0.94 0.93 0.93 0.93 0.92

Dagum 0.25 1.25 1.25 1.33 1.41 1.47 1.47 1.42 1.47
0.50 1.15 1.25 1.33 1.41 1.47 1.47 1.42 1.47
0.75 1.06 1.06 1.08 1.09 1.11 1.11 1.10 1.10
1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
1.25 0.98 0.98 0.97 0.96 0.96 0.96 0.96 0.96
1.50 0.96 0.96 0.95 0.94 0.93 0.93 0.94 0.93
1.75 0.95 0.95 0.93 0.92 0.92 0.92 0.92 0.92
2.00 0.94 0.94 0.93 0.92 0.91 0.91 0.92 0.91

Generalized 0.25 1.18 1.19 1.22 1.26 1.26 1.30 1.23 1.25
Beta 2 0.50 1.14 1.19 1.22 1.26 1.26 1.30 1.23 1.25

0.75 1.10 1.10 1.12 1.15 1.16 1.17 1.15 1.15
1.00 1.04 1.04 1.05 1.05 1.05 1.05 1.05 1.05
1.25 0.99 0.99 0.98 0.97 0.98 0.97 0.98 0.98
1.50 0.95 0.95 0.94 0.93 0.93 0.92 0.94 0.93
1.75 0.94 0.94 0.93 0.92 0.92 0.91 0.92 0.92
2.00 0.94 0.94 0.93 0.91 0.91 0.90 0.92 0.91

The figures represent the ratio between the grouped data KDE-based poverty headcount ratio
(averaged over 2,000 replications) and the population value. Estimates are based on decile means
and the Epanechnikov kernel. Figures in boldface represent cases in which the population value lies
inside the 95 percent confidence interval around the average estimate.

Table 3 for multiple poverty lines.15 Comparing across rows, we notice that KDE-
based poverty estimates are relatively insensitive to the choice of kernel, which
is consistent with Fig. 2 (Panels A–C). Comparing across columns, the degree of
variation in the empirical bias corresponding to each poverty line seems robust across
kernels. Put differently, the pattern identified above—that the HCR tends to be
overestimated for lower poverty lines and underestimated for higher poverty lines—
holds up across kernels.

4.5 Empirical biases across poverty indicators

We also explore whether the biases discussed above are confined to the HCR or
afflict other poverty indicators as well. We consider indicators that take account of
the depth of poverty, measured as the distance between the income of the poor

15For alternate bandwidths, see Table A4 in the Supplementary Appendix.
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Table 3 How does the bias vary across kernels?

Underlying Kernel Poverty line (as multiple of population median)

distribution 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Log-normal Epanechnikov 1.27 1.10 1.03 1.00 0.98 0.97 0.96 0.96
Gaussian 1.18 1.07 1.02 1.00 0.98 0.97 0.97 0.97
Quartic 1.27 1.10 1.03 1.00 0.98 0.97 0.96 0.96
Triweight 1.28 1.10 1.03 1.00 0.98 0.97 0.96 0.96

Dagum Epanechnikov 1.25 1.15 1.06 1.01 0.98 0.96 0.95 0.94
Gaussian 1.14 1.11 1.05 1.01 0.98 0.97 0.96 0.96
Quartic 1.25 1.14 1.06 1.01 0.98 0.96 0.95 0.95
Triweight 1.26 1.14 1.06 1.01 0.98 0.96 0.95 0.95

Generalized Epanechnikov 1.18 1.14 1.10 1.04 0.99 0.95 0.94 0.94
Beta 2 Gaussian 1.05 1.10 1.09 1.04 1.00 0.97 0.96 0.96

Quartic 1.19 1.14 1.10 1.04 0.99 0.95 0.95 0.94
Triweight 1.19 1.14 1.10 1.04 0.99 0.96 0.95 0.94

The figures represent the ratio between the grouped data KDE-based poverty headcount ratio
(averaged over 2,000 replications) and the population value. Estimates are based on decile means
and the S4 bandwidth. Figures in boldface represent cases in which the population value lies inside
the 95 percent confidence interval around the average estimate.

and the poverty line, such as the poverty gap ratio FGT(1), the squared poverty
gap FGT(2), and the still more distributionally-sensitive FGT(3) and FGT(4). (For
definitions see Section 2.1). The results are depicted in Table 4 for two representative
kernel-bandwidth pairs, namely Epanechnikov-S4 and Epanechnikov-DPI-2 (Panels
A–B). In Panel C we report for comparison the results based on the estimation
of the Lorenz curve using the Beta model. We find that the extent of poverty
according to FGT indicators other than the HCR is mostly overestimated by the
nonparametric approach, with the biases diminishing with higher poverty lines. By
contrast, the parametric estimator consistently leads to remarkably accurate results,
with the exception of the lowest two poverty lines.16

There are also differences in the size of KDE-generated biases for different
underlying income distributions (Table 4, Panels A–B). Data drawn from the log-
normal distribution is associated with the highest positive biases. Data from the
GB2 distributions are on average associated with lower positive biases and also with
negative biases for both the lowest poverty line and for higher poverty lines. The
crossing of the fitted and population densities in the left tail of this distribution
gives rise to a non-monotonic relationship between the bias in the estimate of the
HCR and the poverty line, for both the Dagum and the GB2 distributions. The
biases associated with the parametric estimator (Panel C) are smaller, and do not
vary systematically across the distributions considered. The results in Table 4, both
for the parametric and nonparametric approach, underscore the sensitivity of both
parametric and nonparametric methods to the data generating process, and echo our
earlier findings on how they fared in recovering summary statistics (Table 1).

16The latter finding is not surprising considering the relatively poor performance of the Beta model
for estimating the cumulative shares of the lower population groups, for which it sometimes generates
negative fitted Lorenz curve estimates, as discussed by Kakwani [19] and empirically documented by
Minoiu and Reddy [30].
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Table 4 How does the bias vary across poverty indicators?

Underlying Poverty indicator Poverty line (as multiple of population median)

distribution 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Panel A. Kernel-bandwidth pair: (Epanechnikov, S4)
Log-normal Poverty headcount ratio 1.27 1.10 1.03 1.00 0.98 0.97 0.96 0.96

Poverty gap ratio 1.36 1.20 1.12 1.07 1.04 1.02 1.01 1.00
Squared poverty gap 1.40 1.26 1.18 1.13 1.09 1.07 1.05 1.04
FGT3 1.40 1.31 1.22 1.17 1.13 1.10 1.08 1.07
FGT4 1.39 1.34 1.26 1.20 1.16 1.13 1.11 1.09

Dagum Poverty headcount ratio 1.25 1.15 1.06 1.01 0.98 0.96 0.95 0.94
Poverty gap ratio 1.11 1.18 1.13 1.08 1.05 1.03 1.01 1.00
Squared poverty gap 0.95 1.16 1.15 1.12 1.09 1.07 1.05 1.03
FGT3 0.80 1.11 1.15 1.14 1.12 1.10 1.08 1.06
FGT4 0.66 1.05 1.13 1.14 1.13 1.12 1.10 1.09

Generalized Poverty headcount ratio 1.18 1.14 1.10 1.04 0.99 0.95 0.94 0.94
Beta 2 Poverty gap ratio 0.94 1.12 1.12 1.10 1.06 1.03 1.01 0.99

Squared poverty gap 0.71 1.05 1.10 1.11 1.09 1.07 1.05 1.03
FGT3 0.52 0.96 1.07 1.10 1.10 1.09 1.07 1.06
FGT4 0.38 0.86 1.02 1.07 1.09 1.09 1.09 1.08

Panel B. Kernel-bandwidth pair: (Epanechnikov, DPI-2)
Log-normal Poverty headcount ratio 1.54 1.18 1.06 1.00 0.96 0.94 0.93 0.92

Poverty gap ratio 1.88 1.41 1.23 1.14 1.09 1.05 1.02 1.00
Squared poverty gap 3.52 2.38 1.97 1.74 1.60 1.51 1.44 1.38
FGT3 2.37 1.75 1.50 1.36 1.27 1.21 1.17 1.13
FGT3 2.56 1.89 1.61 1.45 1.35 1.28 1.23 1.19

Dagum Poverty headcount ratio 1.47 1.26 1.10 1.01 0.96 0.93 0.92 0.91
Poverty gap ratio 1.42 1.37 1.25 1.16 1.09 1.05 1.02 1.00
Squared poverty gap 1.32 1.39 1.32 1.25 1.18 1.13 1.10 1.07
FGT3 1.21 1.39 1.36 1.30 1.24 1.20 1.16 1.12
FGT4 1.09 1.36 1.37 1.34 1.29 1.24 1.21 1.17

Generalized Poverty headcount ratio 1.25 1.25 1.15 1.05 0.98 0.93 0.92 0.91
Beta 2 Poverty gap ratio 1.06 1.23 1.21 1.16 1.10 1.05 1.02 0.99

Squared poverty gap 1.77 2.05 2.02 1.92 1.80 1.69 1.60 1.53
FGT3 0.71 1.08 1.18 1.19 1.18 1.16 1.13 1.10
FGT4 0.57 1.00 1.14 1.18 1.19 1.17 1.16 1.14

Comparing across kernel-bandwidth pairs (Panel A vs. B), we note that the biases
are unambiguously larger in Panel B. This is because the DPI-2 bandwidth leads
to more smoothing than the S4 bandwidth. This pattern is robust to using alternate
kernels.17

4.6 Empirical biases across quintiles, deciles, and ventiles

In our assessment of the performance of parametric and nonparametric methods
in estimating quantile means, we have focused on deciles. How the techniques fare
on datasets of quintiles or ventiles is also of interest. Previous studies of the global
income distribution mostly focused on quintiles, while future studies are likely to use

17See Table A5 in the Supplementary Appendix.
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Table 4 (continued)

Underlying Poverty indicator Poverty line (as multiple of population median)

distribution 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Panel C. Lorenz Curve parametric estimation: Beta
Log-normal Poverty headcount ratio 1.20 1.01 0.96 0.95 0.96 0.96 0.97 0.98

Poverty gap ratio 0.93 1.05 1.01 0.99 0.98 0.97 0.97 0.97
Squared poverty gap 0.63 1.01 1.02 1.01 0.99 0.98 0.98 0.98
FGT3 0.40 0.93 1.01 1.01 1.00 1.00 0.99 0.98
FGT4 0.24 0.84 0.98 1.00 1.01 1.00 1.00 0.99

Dagum Poverty headcount ratio 0.95 1.00 0.99 0.98 0.98 0.98 0.99 0.99
Poverty gap ratio 0.92 0.98 0.99 0.98 0.98 0.98 0.98 0.98
Squared poverty gap 0.93 0.96 0.98 0.98 0.98 0.98 0.98 0.98
FGT3 0.98 0.95 0.97 0.98 0.98 0.98 0.98 0.98
FGT4 1.05 0.95 0.96 0.97 0.98 0.98 0.98 0.98

Generalized Poverty headcount ratio 0.87 0.97 1.01 1.01 1.00 1.00 1.00 1.01
Beta 2 Poverty gap ratio 0.98 0.94 0.98 0.99 1.00 1.00 1.00 1.00

Squared poverty gap 1.17 0.96 0.96 0.98 0.99 0.99 1.00 1.00
FGT3 1.40 1.01 0.97 0.97 0.98 0.98 0.99 0.99
FGT4 1.66 1.09 0.99 0.97 0.97 0.98 0.98 0.99

The figures represent the ratio between the grouped data KDE-based poverty indicator and the
population value (Panels A, B) and between the parametric estimate of the poverty indicator and
the population value (Panel C). Poverty indicators are averaged over 2,000 replications. Estimates
are based on deciles means. The poverty lines are expressed as multiples of the population median,
ranging from a quarter of the median (0.25) to twice (2) the median. Figures in boldface represent
cases in which the population value lies inside the 95 percent confidence interval around the average
estimate.

more data points, as existing databases such as the UNU-WIDER World Income
Inequality database and the World Bank’s Global Income Inequality database now
contain tabulations for both deciles and ventiles.

Table 5 shows how the errors in the estimated HCR vary across quintile means,
decile means, and ventile means. For the nonparametric estimator, we focus on
the Epanechnikov and Gaussian kernels and the S2 bandwidth to illustrate a
general pattern (Panel A).18 Comparing across rows, for the higher-than-median
poverty lines more data points appear to improve the estimation. By contrast, for
the lower poverty lines, perhaps surprisingly, there is no monotonic relationship
between the number of quantile means and the bias. In results not reported here,
we ran simulations on increasingly larger numbers of quantile means, and did not
see monotonicity restored until a threshold of approximately 2530 quantile means
was reached. However, 25 to 30 quantile means are rarely, if ever, available to
researchers. The results for the parametric approach are shown in Panel B. Although
it delivers consistently superior estimates of poverty (for all but the lowest poverty
lines), neither the GQ nor the Beta functional forms yield a monotonic relationship
between the number of data points and the empirical bias. This is in keeping with
earlier evaluations of the performance of these methods on other plausible income
distributions (see [30]).

18For alternate kernel-bandwidth combinations, see Table A6 in the Supplementary Appendix.
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Table 5 How does the bias vary with the number of data points?

Kernel Underlying Number Poverty line (as multiple of population median)

bandwidth distribution of data 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
pair points

Panel A. Kernel density estimation
Epanechnikov, S2 Log-normal Quintiles 1.23 1.09 1.03 0.99 0.96 0.94 0.93 0.93

Deciles 1.36 1.13 1.04 1.00 0.97 0.96 0.95 0.94
Ventiles 1.30 1.10 1.03 1.00 0.98 0.97 0.96 0.96

Dagum Quintiles 1.15 1.16 1.08 1.00 0.95 0.93 0.92 0.92
Deciles 1.33 1.20 1.08 1.01 0.97 0.95 0.93 0.93
Ventiles 1.27 1.15 1.06 1.01 0.98 0.96 0.95 0.95

Generalized Quintiles 0.99 1.19 1.11 1.03 0.97 0.95 0.94 0.94
Beta 2 Deciles 1.56 1.38 1.16 1.01 0.91 0.85 0.83 0.82

Ventiles 1.17 1.14 1.10 1.04 0.99 0.96 0.95 0.94
Gaussian, S2 Log-normal Quintiles 1.04 1.04 1.01 0.98 0.97 0.96 0.95 0.95

Deciles 1.25 1.09 1.03 0.99 0.98 0.96 0.96 0.95
Ventiles 1.24 1.09 1.03 1.00 0.98 0.97 0.97 0.96

Dagum Quintiles 0.90 1.10 1.04 1.00 0.97 0.95 0.94 0.94
Deciles 1.22 1.15 1.06 1.01 0.98 0.96 0.95 0.94
Ventiles 1.21 1.13 1.06 1.01 0.98 0.97 0.96 0.96

Generalized Quintiles 0.64 1.11 1.08 1.04 0.99 0.97 0.96 0.96
Beta 2 Deciles 1.10 1.15 1.11 1.05 0.99 0.96 0.95 0.95

Ventiles 1.10 1.13 1.09 1.04 0.99 0.96 0.96 0.95
Panel B. Lorenz curve parametric estimation

GQ Log-normal Quintiles 1.11 1.01 0.97 0.96 0.97 0.98 0.98 0.99
Deciles 1.04 1.01 1.00 1.00 1.00 1.00 1.00 1.00
Ventiles 1.04 1.01 1.00 1.00 1.00 1.00 1.00 1.00

Dagum Quintiles 1.05 1.03 1.00 0.99 0.99 1.00 1.00 1.00
Deciles 1.06 1.04 1.01 1.00 1.00 1.00 1.00 1.00
Ventiles 1.06 1.05 1.02 1.01 1.00 1.00 1.00 1.00

Generalized Quintiles 0.41 0.99 1.16 1.14 1.08 1.04 1.01 1.00
Beta 2 Deciles 0.43 1.01 1.17 1.15 1.08 1.04 1.01 1.00

Ventiles 0.45 1.03 1.18 1.15 1.09 1.04 1.01 1.00
Beta Log-normal Quintiles 1.11 1.01 0.97 0.96 0.97 0.98 0.98 0.99

Deciles 1.20 1.01 0.96 0.95 0.96 0.96 0.97 0.98
Ventiles 1.27 1.02 0.96 0.95 0.95 0.96 0.96 0.97

Dagum Quintiles 0.93 0.98 0.98 0.98 0.98 0.99 0.99 1.00
Deciles 0.95 1.00 0.99 0.98 0.98 0.98 0.99 0.99
Ventiles 0.98 1.01 0.99 0.98 0.98 0.98 0.98 0.99

Generalized Quintiles 0.89 0.96 1.00 1.01 1.00 1.00 1.01 1.01
Beta 2 Deciles 0.87 0.97 1.01 1.01 1.00 1.00 1.00 1.01

Ventiles 0.85 0.98 1.02 1.01 1.00 1.00 1.00 1.01

The figures represent the ratio between the grouped data KDE-based poverty headcount ratio and
the population value (Panel A); and between the parametric estimate of the headcount ratio and
the population value (Panel B). Poverty headcount ratios are averaged over 2,000 replications. The
poverty lines are expressed as multiples of the population median, ranging from a quarter of the
median (0.25) to twice (2) the median. Figures in boldface represent cases in which the population
value lies inside the 95 percent confidence interval around the average estimate.

The main lesson we draw from the Monte Carlo study is that it is difficult to
summarize the KDE-generated biases in poverty indicators with statements that
hold true across distributions or parameters. The simulations show that the errors
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depend on the bandwidth, kernel, and the size of the dataset—all of which are
choice variables for the researcher. Moreover, they depend on the unknown data
generating process. Biases associated with the parametric estimation of the Lorenz
curve similarly vary with the underlying distribution, but are consistently of lower
magnitude than when nonparametric estimation is used.

In the case of the unimodal distributions considered here, we have uncovered
several robust patterns. The KDE-based HCR tends to be overestimated for lower
poverty lines, roughly well estimated around the population median, and underesti-
mated for higher poverty lines. It may be more difficult to find consistent patterns
for distributions with multiple modes. Minoiu and Reddy [29] analyze a multimodal
distribution and find that the positioning of the poverty line relative to the modes and
the extent of smoothing achieved by a kernel-bandwidth combination play a more
important role in determining the sign and size of the errors than with unimodal
distributions. Similarly, Minoiu and Reddy [30] document a worse performance for
the parametric approach when employed on multi-peaked rather than unimodal
distributions.

Given the variety of income distributions likely present in real-world data, these
results may not apply more generally. Nonetheless, they lead us to caution against
the use of nonparametric density estimators for grouped data suspected to come
from unimodal distributions, for which parametric approaches already in widespread
use fare better. For grouped data likely to come from multimodal distributions, a
thorough sensitivity analysis to assess the effect of alternate estimation methods and
parameter choices is desirable before drawing firm conclusions.

5 Sensitivity analysis of global poverty estimates

We wrap up our assessment of the performance of grouped-data KDE methods for
poverty analysis by undertaking a sensitivity analysis of global poverty estimates to
changes in the bandwidth. Consumption shares by decile for 65 developing countries
covering 70% of the world’s population in 1995 were assembled from the Povcalnet
website [41] for the years 1995 and 2005 (or closest available year).19 These were
scaled by total household consumption from the Penn World Tables Mark 6.3
[15] to obtain decile means. We applied KDE to each country’s decile means and
aggregated the estimated individual country distributions into a global distribution of
consumption. Global poverty is measured with the HCR and the absolute headcount
(AHC) for five international poverty lines that range between $1/day and $2.5/day
(all expressed in 2005 PPPs).20

19See Table A7 in the Supplementary Appendix for the list of countries and available distributional
data.
20See [6] for definitions of the poverty lines.
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The sensitivity analysis was undertaken for the Quartic kernel and a range of
bandwidths.21 In addition to the data-driven bandwidths discussed in Section 3.2,
we also consider here a “hybrid” bandwidth that has been used in previous studies
of the global income distribution. This bandwidth is computed as is Silverman’s S4
bandwidth, which assumes an underlying Gaussian distribution for log-incomes, but
is kept constant across countries. Following [35], the hybrid bandwidth for deciles
is computed assuming a standard deviation of 0.6—the value for China. Note that
the hybrid bandwidth is ‘optimal’ for China, but may not be optimal (in a statistical
sense) for other countries unless their distribution is close to China’s.

The results are summarized in Table 6, where the bandwidths are arranged from
left to right in ascending order of smoothing (i.e., from the smallest to the largest).
There are significant variations in estimated poverty levels across bandwidths (Panels
A–B). According to the standard $1.25/day poverty line, in 1995 the estimated global
HCR ranges between 7.8% and 12.6%, while for 2005 it varies from 2.2% to 6.1%.
As shown in the last two columns, which report the range of variation in the HCR
and AHC across bandwidths, the degree of sensitivity to the choice of bandwidth
is highest for the lowest poverty line. The extent of variation across bandwidths is
significant for the AHC as well. In 1995, the estimated $1/day AHC ranges from
174 to 366 million (a factor of two), while in 2005 the estimated AHC for the same
poverty line varies between 62 and 170 million (a factor of almost three).

Turning to the trend of global poverty, we find that the estimated number of
people lifted from ‘$1/day poverty’ over 1995–2005 is 112 million based on the
hybrid bandwidth and between 150 and 196 for other bandwidths (Panels C–E).
The range of variation across bandwidths in the estimated reduction in the AHC
is from 80% (84 million individuals) for the lowest poverty line to 30% (116.3 million
individuals) for the highest poverty line. Importantly, all estimates are consistent with
a reduction in world poverty over 1995–2005 regardless of the bandwidth or poverty
line considered.

Our sensitivity analysis illustrates two points. The first is that the range of variation
in estimated poverty levels across all bandwidths considered is sizable. For this
reason, undertaking sensitivity analyses to parameter choices such as the bandwidth
is an important step when nonparametrically estimating the income distribution
from grouped data. The second is that the range of variation is significantly lower
among data-driven bandwidths. This underlines the potential drawbacks of non data-
driven bandwidths, such as the hybrid bandwidth, which can be appealing due to
their simplicity but may smooth “too much” or “too little” on some datasets. In our
context, the hybrid bandwidth is optimal for the Chinese dataset but is likely unfit
for the other countries. It systematically produces the lowest poverty estimates and
is thus something of an outlier among the estimators.

Finally, we note that the global poverty estimates presented in this section should
not be interpreted as authoritative due to numerous deficiencies in the methods
employed to produce them (discussed, for instance, in [34]). Although we do not
know how close these estimates are to the ‘true’ level of global poverty, this
sensitivity exercise can help gauge the uncertainties surrounding KDE-based global
poverty figures.

21The results are robust to using the Gaussian and Epanechnikov kernels (see Tables A8–A9 in the
Supplementary Appendix).
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6 Concluding remarks

Kernel density estimation has gained popularity in recent years as an attractive
alternative to parametric methods for estimating the income distribution. Its ad-
vantage is that it does not require (potentially restrictive) distributional assumptions
concerning the underlying density function. However, this technique has been used
primarily to analyze the global income distribution from grouped data rather than
individual records. In this paper, we assessed the performance of kernel density
estimation in recovering features of the income distribution from grouped data,
focusing on poverty measures. We also examined its performance relative to a
widely-used parametric approach which consists of estimating the Lorenz curve from
grouped data using two alternate functional forms. Our goal has been to document
the sign and size of biases associated with the application of nonparametric methods
in poverty analysis, and to raise awareness of their potential caveats.

We found that kernel density estimation gives rise to nontrivial biases that depend
on the bandwidth, kernel, poverty indicator, poverty line, size of the dataset, and
data generating process. Using Monte Carlo simulations on data drawn from several
unimodal distributions, we showed that the average income of the poorest individuals
is generally understated by the technique, while that of the richest individuals is
overstated: the poor seem to be poorer, and the rich appear richer. This translates
into a systematic overestimation of the poverty headcount ratio for lower poverty
lines and its underestimation for higher poverty lines. Poverty estimates based on
the nonparametric method are reliable only when the poverty line is close to the
population median. The further is the poverty line from the population median, the
more the poverty headcount rate tends to be misestimated. We also undertook a
sensitivity analysis of global poverty estimates to changes in the bandwidth, a key
parameter in kernel density estimation, and found that the choice of bandwidth had
a marked impact on global poverty statistics.

Taken together, our results suggest that the advantage of nonparametric
estimation—its freedom from distributional assumptions—comes at a cost. We note,
however, that our study does not represent an indictment of either kernel density
estimation nor of the use of grouped data in income distribution analysis as such.
The weakness of the kernel density estimator in this particular setting originates from
the combination of the estimator and the nature of the data, and is also influenced
by the specific distribution and poverty line. Kernel density estimation works well
on large datasets (i.e., when individual records are available). Similarly, grouped
data can be useful in conjunction with parametric methods for the Lorenz curve or
income density. The methods for the parametric estimation of the Lorenz curve con-
sidered here consistently yield empirical biases of lower, often negligible, magnitude
compared to their nonparametric counterparts. On this basis, we view them as the
preferred approach. Nevertheless, there is some evidence that each of the parametric
approaches considered works best on a different income distribution. Whether the
applied researcher has a preference for parametric or nonparametric methods, our
results underscore the need for a thorough sensitivity analysis to estimation method
or to parameter assumptions whenever grouped data are involved.
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